Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20238682

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) induces a severe cytokine storm that may cause acute lung injury/acute respiratory distress syndrome (ALI/ARDS) with high clinical morbidity and mortality in infected individuals. Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid isolated and extracted from Stephania cepharantha Hayata. It exhibits various pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, anti-tumor, and antiviral activities. The low oral bioavailability of CEP can be attributed to its poor water solubility. In this study, we utilized the freeze-drying method to prepare dry powder inhalers (DPI) for the treatment of acute lung injury (ALI) in rats via pulmonary administration. According to the powder properties study, the aerodynamic median diameter (Da) of the DPIs was 3.2 µm, and the in vitro lung deposition rate was 30.26; thus, meeting the Chinese Pharmacopoeia standard for pulmonary inhalation administration. We established an ALI rat model by intratracheal injection of hydrochloric acid (1.2 mL/kg, pH = 1.25). At 1 h after the model's establishment, CEP dry powder inhalers (CEP DPIs) (30 mg/kg) were sprayed into the lungs of rats with ALI via the trachea. Compared with the model group, the treatment group exhibited a reduced pulmonary edema and hemorrhage, and significantly reduced content of inflammatory factors (TNF-α, IL-6 and total protein) in their lungs (p < 0.01), indicating that the main mechanism of CEP underlying the treatment of ALI is anti-inflammation. Overall, the dry powder inhaler can deliver the drug directly to the site of the disease, increasing the intrapulmonary utilization of CEP and improving its efficacy, making it a promising inhalable formulation for the treatment of ALI.


Subject(s)
Acute Lung Injury , Benzylisoquinolines , COVID-19 , Rats , Animals , Administration, Inhalation , Dry Powder Inhalers , COVID-19/metabolism , SARS-CoV-2 , Respiratory Aerosols and Droplets , Lung/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Benzylisoquinolines/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/analysis , Particle Size , Powders/analysis
2.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2297701

ABSTRACT

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzylisoquinolines , COVID-19 , Stephania tetrandra , Stephania , Humans , Stephania tetrandra/chemistry , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiviral Agents/pharmacology , Stephania/chemistry
3.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2231808

ABSTRACT

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Benzylisoquinolines , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Chlorocebus aethiops , COVID-19 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2/drug effects , Vero Cells , Plants, Medicinal/chemistry , Phytochemicals/pharmacology
4.
Molecules ; 28(1)2022 Dec 25.
Article in English | MEDLINE | ID: covidwho-2200540

ABSTRACT

African swine fever virus (ASFV) causes a viral disease in swine with a mortality rate of approximately 100%, threatening the global pig industry's economic development. However, vaccines are not yet commercially available, and other antiviral therapeutics, such as antiviral drugs, are urgently needed. In this study, berbamine hydrochloride, a natural bis-benzylisoquinoline alkaloid isolated from the traditional Chinese herb Berberis amurensis, showed significant antiviral activity against ASFV. The 50% cytotoxic concentration (CC50) of berbamine hydrochloride in porcine alveolar macrophages (PAMs) was 27.89 µM. The antiviral activity assay demonstrated that berbamine hydrochloride inhibits ASFV in a dose-dependent manner. In addition, a 4.14 log TCID50 decrease in the viral titre resulting from non-cytotoxic berbamine hydrochloride was found. Moreover, the antiviral activity of berbamine hydrochloride was maintained for 48h and took effect at multiplicities of infection (MOI) of 0.01, 0.1, and 1. The time-of-addition analysis revealed an inhibitory effect throughout the entire virus life-cycle. A subsequent viral entry assay verified that berbamine hydrochloride blocks the early stage of ASFV infection. Moreover, similar anti-ASFV activity of berbamine hydrochloride was also found in PK-15 and 3D4/21 cells. In summary, these results indicate that berbamine hydrochloride is an effective anti-ASFV natural product and may be considered a novel antiviral drug.


Subject(s)
African Swine Fever Virus , African Swine Fever , Benzylisoquinolines , Swine , Animals , Benzylisoquinolines/pharmacology , Antiviral Agents/pharmacology
5.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163530

ABSTRACT

Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.


Subject(s)
Alkaloids , Benzylisoquinolines , COVID-19 , Humans , Benzylisoquinolines/pharmacology , Alkaloids/chemistry , Antiviral Agents/pharmacology
6.
Cell Death Dis ; 13(11): 1000, 2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2133355

ABSTRACT

Ferroptosis induced by detrimental accumulation of lipid peroxides has been recently linked to a variety of pathological conditions ranging from acute tissue injuries to chronic degenerative diseases and suppression of ferroptosis by small chemical inhibitors is beneficial to the prevention and treatment of these diseases. However, in vivo applicable small chemical ferroptosis inhibitors are limited currently. In this study, we screened an alkaloid natural compound library for compounds that can inhibit RSL3-induced ferroptosis in HT1080 cells and identified a group of bisbenzylisoquinoline (BBIQ) compounds as novel ferroptosis-specific inhibitors. These BBIQ compounds are structurally different from known ferroptosis inhibitors and they do not appear to regulate iron homeostasis or lipid ROS generation pathways, while they are able to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH) in cell-free reactions and prevent accumulation of lipid peroxides in living cells. These BBIQ compounds demonstrate good in vivo activities as they effectively protect mice from folic acid-induced renal tubular ferroptosis and acute kidney injury. Several BBIQ compounds are approved drugs in Japan and China for traditional uses and cepharanthine is currently in clinical trials against SARS-CoV-2, our discovery of BBIQs as in vivo applicable ferroptosis inhibitors will expand their usage to prevent ferroptotic tissue damages under various pathological conditions.


Subject(s)
Benzylisoquinolines , COVID-19 , Ferroptosis , Animals , Mice , Lipid Peroxides , SARS-CoV-2 , Benzylisoquinolines/pharmacology
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(6): 955-956, 2022 Jun 20.
Article in Chinese | MEDLINE | ID: covidwho-1924684

ABSTRACT

As a member of the dibenzyl isoquinoline alkaloid family, cepharathine is an alkaloid from the traditional Chinese medicine cepharathine, which is mainly used for treatment of leukopenia and other diseases. Recent studies of the inhibitory effect of cepharathine against SARS-CoV-2 have attracted widespread attention and aroused heated discussion. As the original discoverer of the anti-SARS-CoV-2 activity of cepharanthine, here we briefly summarize the discovery of cepharanthine and review important progress in relevant studies concerning the discovery and validation of anti-SARS-CoV-2 activity of cepharathine, its antiviral mechanisms and clinical trials of its applications in COVID-19 therapy.


Subject(s)
Benzylisoquinolines , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Humans , SARS-CoV-2
8.
Viruses ; 14(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1911617

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the family Coronaviridae that causes severe diarrhea and high mortality in neonatal suckling piglets. Currently, there is no effective medication against this pathogen. Cepharanthine (CEP), tetrandrine (TET), and fangchinoline (FAN) are natural bis-benzylisoquinoline alkaloids with anti-inflammatory, antitumor, and antiviral properties. Here, we first found that CEP, TET, and FAN had anti-PEDV activity with IC50 values of 2.53, 3.50, and 6.69 µM, respectively. The compounds could block all the processes of viral cycles, but early application of the compounds before or during virus infection was advantageous over application at a late stage of virus replication. FAN performed inhibitory function more efficiently through interfering with the virus entry and attachment processes or through attenuating the virus directly. CEP had a more notable effect on virus entry. With the highest SI index of 11.8 among the three compounds, CEP was chosen to carry out animal experiments. CEP in a safe dosage of 11.1 mg/kg of body weight could reduce viral load and pathological change of piglet intestinal tracts caused by PEDV field strain challenge, indicating that CEP efficiently inhibited PEDV infection in vivo. All of these results demonstrated that the compounds of bis-benzylisoquinoline alkaloids could inhibit PEDV proliferation efficiently and had the potential of being developed for PED prevention and treatment.


Subject(s)
Benzylisoquinolines , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Benzylisoquinolines/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Diarrhea , Swine , Swine Diseases/pathology
9.
PLoS Negl Trop Dis ; 16(4): e0010363, 2022 04.
Article in English | MEDLINE | ID: covidwho-1808522

ABSTRACT

COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.


Subject(s)
Benzylisoquinolines , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Humans , Membrane Fusion , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization
10.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540045

ABSTRACT

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , COVID-19/prevention & control , Plant Preparations/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , COVID-19/virology , Chlorocebus aethiops , Coronavirus M Proteins/antagonists & inhibitors , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Preparations/chemistry , Plant Preparations/metabolism , Protein Binding , Protein Conformation , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stephania/chemistry , Vero Cells
11.
J Med Virol ; 93(10): 5825-5832, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432413

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapeutics against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also against other pathogenic coronaviruses. In this study, we report on a kind of bisbenzylisoquinoline alkaloid, neferine, as a pan-coronavirus entry inhibitor. Neferine effectively protected HEK293/hACE2 and HuH7 cell lines from infection by different coronaviruses pseudovirus particles (SARS-CoV-2, SARS-CoV-2 [D614G, N501Y/D614G, 501Y.V1, 501Y.V2, 501Y.V3 variants], SARS-CoV, MERS-CoV) in vitro, with median effect concentration (EC50 ) of 0.13-0.41 µM. Neferine blocked host calcium channels, thus inhibiting Ca2+ -dependent membrane fusion and suppressing virus entry. This study provides experimental data to support the fact that neferine may be a promising lead for pan-coronaviruses therapeutic drug development.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Calcium/metabolism , SARS-CoV-2/drug effects , Virus Internalization/drug effects , COVID-19/virology , Cell Line , Coronavirus/drug effects , Coronavirus/physiology , HEK293 Cells , Humans , Isoquinolines/pharmacology , Phenols/pharmacology , SARS-CoV-2/physiology
14.
Brief Bioinform ; 22(2): 1378-1386, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352117

ABSTRACT

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Animals , Chlorocebus aethiops , Homeostasis , Humans , Vero Cells
15.
Pharmacol Rep ; 72(6): 1509-1516, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-662484

ABSTRACT

Cepharanthine (CEP) is a naturally occurring alkaloid derived from Stephania cepharantha Hayata and demonstrated to have unique anti-inflammatory, antioxidative, immunomodulating, antiparasitic, and antiviral properties. Its therapeutic potential as an antiviral agent has never been more important than in combating COVID-19 caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) virus. Cepharanthine suppresses nuclear factor-kappa B (NF-κB) activation, lipid peroxidation, nitric oxide (NO) production, cytokine production, and expression of cyclooxygenase; all of which are crucial to viral replication and inflammatory response. Against SARS-CoV-2 and homologous viruses, CEP predominantly inhibits viral entry and replication at low doses; and was recently identified as the most potent coronavirus inhibitor among 2406 clinically approved drug repurposing candidates in a preclinical model. This review critically analyzes and consolidates available evidence establishing CEP's potential therapeutic importance as a drug of choice in managing COVID-19 cases.


Subject(s)
Antiviral Agents/therapeutic use , Benzylisoquinolines/therapeutic use , COVID-19 Drug Treatment , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , COVID-19/virology , Drug Repositioning , Humans , Inflammation/drug therapy , Inflammation/virology , Japan , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Virus Replication/drug effects
16.
FASEB J ; 34(6): 7253-7264, 2020 06.
Article in English | MEDLINE | ID: covidwho-175986

ABSTRACT

Drug repurposing is potentially the fastest available option in the race to identify safe and efficacious drugs that can be used to prevent and/or treat COVID-19. By describing the life cycle of the newly emergent coronavirus, SARS-CoV-2, in light of emerging data on the therapeutic efficacy of various repurposed antimicrobials undergoing testing against the virus, we highlight in this review a possible mechanistic convergence between some of these tested compounds. Specifically, we propose that the lysosomotropic effects of hydroxychloroquine and several other drugs undergoing testing may be responsible for their demonstrated in vitro antiviral activities against COVID-19. Moreover, we propose that Niemann-Pick disease type C (NPC), a lysosomal storage disorder, may provide new insights into potential future therapeutic targets for SARS-CoV-2, by highlighting key established features of the disorder that together result in an "unfavorable" host cellular environment that may interfere with viral propagation. Our reasoning evolves from previous biochemical and cell biology findings related to NPC, coupled with the rapidly evolving data on COVID-19. Our overall aim is to suggest that pharmacological interventions targeting lysosomal function in general, and those particularly capable of reversibly inducing transient NPC-like cellular and biochemical phenotypes, constitute plausible mechanisms that could be used to therapeutically target COVID-19.


Subject(s)
Antiviral Agents/pharmacokinetics , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Drug Repositioning , Endosomes/virology , Hydroxychloroquine/pharmacology , Lysosomes/virology , Niemann-Pick Disease, Type C/pathology , Pneumonia, Viral/drug therapy , ADAM17 Protein/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Biological Transport , COVID-19 , Cathepsin L/physiology , Endocytosis , Endosomes/drug effects , Endosomes/physiology , Glycopeptides/pharmacology , Glycopeptides/therapeutic use , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/physiology , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Lipids/metabolism , Membrane Microdomains/physiology , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism , Oxysterols/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/physiology , Triazoles/pharmacology , Triazoles/therapeutic use , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL